Empirical Prediction of Computer-Network Evolution
نویسنده
چکیده
This article presents a computer-aided integration tool, iCAD, that can predict a network evolution. We have used the term a network evolution to mean predicting changes within the physical network topology as time evolves. iCAD is connected to four device libraries, each of which contains a distinct set of network-technology devices, such as Ethernet hubs, ATM switches, IP routers, and gateways. As a network technology changes, each device library is updated. Then, we have plotted the cost and performance changes between the old and recent network technologies, enabling us to predict future changes to a first order. This article presents empirical results from 1999 until 2005 recording the network evolution progress, where the lower and upper bounds of network evolution came out to be 10% to 25% and 57% to 74% respectively in terms of network-design cost reduction.
منابع مشابه
Bubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine
Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation stat...
متن کاملLink Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملImage Backlight Compensation Using Recurrent Functional Neural Fuzzy Networks Based on Modified Differential Evolution
In this study, an image backlight compensation method using adaptive luminance modification is proposed for efficiently obtaining clear images.The proposed method combines the fuzzy C-means clustering method, a recurrent functional neural fuzzy network (RFNFN), and a modified differential evolution.The proposed RFNFN is based on the two backlight factors that can accurately detect the compensat...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملSurface Tension Prediction of Hydrocarbon Mixtures Using Artificial Neural Network
In this study, artificial neural network was used to predict the surface tension of 20 hydrocarbon mixtures. Experimental data was divided into two parts (70% for training and 30% for testing). Optimal configuration of the network was obtained with minimization of prediction error on testing data. The accuracy of our proposed model was compared with four well-known empirical equations. The arti...
متن کاملEstimation of Evolution of Relative Humidity Distribution for Concrete Slabs
Realistic prediction of concrete shrinkage and creep requires the calculation of the distributions of relative humidity at various times. Although the distributions of the relative humidity can be computed by numerical methods from the differential equation for diffusion, simple prediction formulas can facilitate structural analysis. The purpose of this paper is to present a simple formula for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJBDCN
دوره 3 شماره
صفحات -
تاریخ انتشار 2007